[image:][image:]NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE
(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
COURSE MATERIALS
[image: - Nehru College Of Engineering & Research Centre Images, Thrissur Ho, Thrissur - Colleges]
CST203 LOGIC CIRCUIT DESIGN
VISION OF THE INSTITUTION
To mould true citizens who are millennium leaders and catalysts of change through excellence in education.
MISSION OF THE INSTITUTION
NCERC is committed to transform itself into a center of excellence in Learning and Research in Engineering and Frontier Technology and to impart quality education to mould technically competent citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe discipline, culture and spiritually, and to mould them in to technological giants, dedicated research scientists and intellectual leaders of the country who can spread the beams of light and happiness among the poor and the underprivileged.

ABOUT DEPARTMENT
· Established in: 2002
· Course offered : B.Tech in Computer Science and Engineering
M.Tech in Computer Science and Engineering
M.Tech in Cyber Security
· Approved by AICTE New Delhi and Accredited by NAAC
· [bookmark: _GoBack]Affiliated to. A P J Abdul Kalam Technological University.

DEPARTMENT VISION
Producing Highly Competent, Innovative and Ethical Computer Science and Engineering Professionals to facilitate continuous technological advancement.

DEPARTMENT MISSION
1. To Impart Quality Education by creative Teaching Learning Process
2. To Promote cutting-edge Research and Development Process to solve real world problems with emerging technologies.
3. To Inculcate Entrepreneurship Skills among Students.
4. To cultivate Moral and Ethical Values in their Profession.
5.
PROGRAMME EDUCATIONAL OBJECTIVES
PEO1: Graduates will be able to Work and Contribute in the domains of Computer Science and Engineering through lifelong learning.
PEO2: Graduates will be able to Analyse, design and development of novel Software Packages, Web Services, System Tools and Components as per needs and specifications.
PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing environment by learning and applying new technologies.
PEO4: Graduates will be able to adopt ethical attitudes, exhibit effective communication skills, Teamworkandleadership qualities.

PROGRAM OUTCOMES (POS)
Engineering Graduates will be able to:
1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
PROGRAM SPECIFIC OUTCOMES (PSO)
PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for Real-time Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development of high quality
System Software Tools and Efficient Web Design Models with a focus on performance optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating hardware/software
products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create innovative career path and for the socially relevant issues.

COURSE OUTCOMES

	CO1
	Demonstrate the knowledge of fundamental concepts in graph theory, including properties and characterization of graphs.

	CO2
	Demonstrate the fundamental theorems on Eulerian and Hamiltonian graphs.

	CO3
	Demonstrate the properties and characterization of trees. Illustrate the working of Prim’s and Kruskal’s algorithms for finding minimum cost spanning tree.

	CO4
	Explain planar graphs, their properties and an application for planar graphs.

	CO5
	Illustrate how one can represent a graph in a computer.

	CO6
	Develop the efficient algorithms for graph related problems in different domains of engineering and science.

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

	
	PO
1
	PO
2
	PO
3
	PO
4
	PO
5
	PO
6
	PO
7
	PO
8
	PO
9
	PO
10
	PO
11
	PO
12

	CO1
	3
	2
	
	
	
	
	
	
	
	
	
	1

	CO2
	3
	2
	1
	1
	
	1
	
	
	
	
	
	1

	CO3
	3
	2
	1
	1
	
	1
	
	
	
	
	
	1

	CO4
	3
	2
	1
	1
	
	1
	
	
	
	
	
	1

	CO5
	3
	3
	2
	
	
	
	
	
	
	
	
	1

	CO6
	3
	3
	2
	
	
	
	
	
	
	
	
	1

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

PSO MAPPINGS ALSO NEEDS TO INCLUDE

SYLLABUS

[image:]
CSE DEPARTMENT, NCERC PAMPADY	Page 2

[image:]
[image:]
[image:]

QUESTION BANK

	
MODULE I

	
Q:NO:
	
QUESTIONS
	
CO
	
KL
	
PAGE NO:

	1
	Calculate the arithmetic operation +38 – 22 using 2’s complement method.

	CO1
	K4
	32

	2
	Examine (422.875)10 in binary and Hex form.

	CO1
	K4
	16

	3
	Calculate the arithmetic subtraction (110.111)2 from (1010.01)2

	CO1
	K4
	25

	4
	Examine the following numbers:
(i)(101111111.1101)2 to decimal (ii) (534.625)10 to binary

	CO1
	K4
	13

	5
	Calculate the arithmetic operation +38 – 22 using 2’s complement method.

	CO1
	K4
	15

	6
	Examine (242.875)10 in binary and Hex form.

	CO1
	K4
	18

	7
	Calculate the arithmetic subtraction (111.111)2 from (1110.01)2

	CO1
	K4
	22

	8
	Calculate arithmetic operation (CD812)16 + (54216)16

	CO1
	K4
	18

	9
	Examine (325.25)10 in binary number system.

	CO1
	K4
	19

	
MODULE II

	1
	Generate the minimal SOP expression F= (AB)’+ A’B’+ A’B’C’.

	CO2
	K5
	35

	2
	Generate the minimal SOP expression for F=  m (1,5,7,8,9,10,11,14,15) and implement it using NOR logic.

	CO2
	K5
	44

	3
	Generate the minimal SOP expression for F=  m (2, 3, 5, 7, 9, 11, 12, 13, 14, 15) and implement it using NAND logic.

	CO2
	K5
	47

	4
	Generate the minimal SOP expression for F(A, B, C, D)=∏M(0,1,3,5,6,7,10,14,15)
	CO2
	K5
	50

	5
	State and prove De Morgan’s laws.
	CO2
	K1
	36

	6
	Generate the minimal SOP expression A’B’+ A’B+ AB.

	CO2
	K5
	42

	7
	Develop the expression F=A+BC’+ABD’+ABCD to minterm and maxterm.

	CO2
	K5
	49

	
MODULE III

	1
	Define combinational logic circuit. Explain the steps for designing combinational logic circuit

	CO3
	K1
	53

	2
	Evaluate the truth table for a full subtractor. Reduce it using k-map. Implement it using logic gates, NAND logic and NOR logic.

	CO3
	K6
	60

	3
	Evaluate the truth table for a half adder. Reduce it using k-map. Implement it using logic gates, NAND logic and NOR logic.

	CO3
	K6
	62

	4
	Evaluate the truth table for a full adder. Reduce it using k-map. Implement it using logic gates, NAND logic and NOR logic.

	CO3
	K6
	65

	5
	Evaluate the truth table for a half subtractor. Reduce it using k-map. Implement it using logic gates, NAND logic and NOR logic.

	CO3
	K6
	67

	6
	Evaluate the truth table for a full subtractor. Reduce it using k-map. Implement it using logic gates.

	CO3
	K6
	58

	
MODULE IV

	1
	Design a gray to binary decoder. Write down the truth table, expressions and show the hardware implementation.

	CO4
	K5
	69

	2
	Construct a 4 x 1 Multiplexer and realise the Boolean expression.

	CO4
	K5
	71

	3
	Design a BCD adder circuit.

	CO4
	K5
	73

	4
	Design a binary to gray decoder. Write down the truth table, expressions and show the hardware implementation.

	CO4
	K5
	74

	5
	Construct a 1 x 4 demultiplexer and realise the Boolean expression.
	CO4
	K5
	75

	6
	Compare combinational and sequential circuits.

	CO4
	K4
	76

	7
	Compare encoder and decoder circuits.

	CO4
	K4
	71

	8
	Discuss about race around condition. How can it be avoided?

	CO4
	K2
	70

	9
	Compare asynchronous and synchronous counters.

	CO4
	K4
	74

	10
	Design a 2 bit Magnitude comparator circuit.

	CO4
	K5
	75

	
MODULE V

	1
	Construct a 4-bit Ring counter and Johnson counter. Draw the Truth Table and the waveforms.

	CO5
	K5
	81

	2
	Compare 4-bit serial-In-Parallel-out shift register and 4-bit parallel-In-Parallel- out shift register.

	CO5
	K4
	83

	3
	Explain the design procedure of a synchronous counter with an example.

	CO5
	K2
	85

	4
	Compare 4-bit serial-In-serial-out shift register and 4-bit parallel-In-serial-out shift register.

	CO5
	K4
	89

	5
	Explain the design procedure of a synchronous counter with an example.

	CO5
	K2
	91

	6
	Compare 4-bit serial-In-serial-out shift register and 4-bit parallel-In-serial-out shift register.

	CO5
	K4
	93

	7
	Design a Mod 6 Synchronous counter. Enumerate all the steps in the design.

	CO5
	K5
	92

	8
	Sketch the logical diagram of a 4-bit ring counter using D flip flop.

	CO5
	K3
	94

	9
	Design a Mod 6 Synchronous counter. Enumerate all the steps in the design.

	CO5
	K5
	91

	10
	Sketch the logical diagram of a 4-bit ring counter using D flip flop.

	CO5
	K3
	94

MODULE NOTES
.MODULE I

[image:]
[image:]
[image:]
[image:]

[image:]
[image:]
[image:]

[image:]
[image:]
[image:][image:]
[image:]
[image:]
[image:][image:]
[image:]
[image:]
[image:][image:]

[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:][image:]
[image:]

[image:]
[image:]

MODULE II

[image:]
[image:]
[image:]
[image:]

[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]

[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]

MODULE III
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]

MODULE IV
[image:][image:]
D FLIP FLOP
[image:]
[image:]
[image:]
[image:]
[image:]
MASTER SLAVE JK FLIP FLOP
[image:]
[image:]
T FLIP FLOP
[image:]
[image:]
ASYNCHRONOUS COUNTER
[image:]
SYNCHRONOUS COUNTER
[image:]
ASYNCHRONOUS UP COUNTER
[image:]
[image:]
[image:]
[image:]

[image:]
[image:]
[image:]
[image:]
[image:]

MODULE V
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]

[image:]
[image:]

[image:]
[image:]
[image:]
[image:]

[image:]
[image:]
[image:]
image3.jpeg

image92.png
» Let’s look at the carry out equations for specific bits, using the general
equation from the previous page C,,, = G, + P.C,.

G, =Gy + PGy
G, =G, +P(

=Gy + Py(G + PoCo)
=G, + PGy + PP,C,

G =G+ PG,
=G, + P,(G; + PGy + P,P,Cy)
=G, + P,G; + PyP,Gy + P,PPoCq
C. =Gy +PyC,

=Gy + Py(G, + PG, + PP,Gg + P,PPiCy)
= Gy + P,G, + PyPG, + PyP,P,G, + PP,P PG,

» These expressions are all sums of products, so we can use them to make a
circuit with only a two-level delay.

image93.png
Multiplexer and Demultiplexer

A multiplexer is a circuit that accept many input but give only one output. A
demultiplexer function exactly in the reverse of a multiplexer, that is a demultiplexer
accepts only one input and gives many outputs. Generally multiplexer and
demultiplexer are used together, because of the communication systems are bi

directional.

image94.png
| g g——

image95.png
4 to 1 Multiplexer Circuit Diagram

image96.png
To get the total data output from the multiplexer, all these product terms are to be

summed and then the final Boolean expression of this multiplexer is given as

Y =D0S150 + D151 S0 + D2 S150 + D3 S1 S0

image97.png
Applications of Multiplexer:

Multiplexer are used in various fields where multiple data need to be transmitted using
a single line. Following are some of the applications of multiplexers —

1. Communication system — Communication system is a set of system that enable
communication like transmission system, relay and tributary station, and
communication network. The efficiency of communication system can be
increased considerably using multiplexer. Multiplexer allow the process of
transmitting different type of data such as audio, video at the same time using a
single transmission line.

2. Telephone network — In telephone network, multiple audio signals are integrated
on a single line for transmission with the help of multiplexers. In this way, multiple
audio signals can be isolated and eventually, the desire audio signals reach the
intended recipients.

image98.png
DEMULTIPLEXER

A ‘—|‘>* D, Outputs

. /\ 3
Datainput — 14 ¥ }—:—E D,

image99.png
1 to 4 Dempultiplexer Circuit Diagram

image100.png
Data Input| Select Inputs Outputs
D Sy So Y; Y, Y, Yo
D 0 0 0 0 0 D
D 0 1k 0 0 D 0
D i | 0 0 D 0 0
D 1 1 D 0 0 0

From the table, the output logic can be expressed as min terms and are given below.

YO S0D

I
-

Y1=5IsoD

Y2=S150D

Y3=S81S0D

image101.png
Applications of Demultiplexer:

1. Demultiplexer is used to connect a single source to multiple destinations. The
main application area of demultiplexer is communication system where multiplexer
are used. Most of the communication system are bidirectional i.e. they function in
both ways (transmitting and receiving signals). Hence, for most of the applications,
the multiplexer and demultiplexer work in sync. Demultiplexer are also used for
reconstruction of parallel data and ALU circuits.

2. Communication System — Communication system use multiplexer to carry
multiple data like audio, video and other form of data using a single line for
transmission. This process make the transmission easier. The demultiplexer
receive the output signals of the multiplexer and converts them back to the original
form of the data at the receiving end. The multiplexer and demultiplexer work
together to carry out the process of transmission and reception of data in

communication system.

image102.png
BCD Adder in Digital Logic

BCD stand for binary coded decimal. Suppose, we have two 4-bit numbers A and B. The value of A and
B can varies from 0(0000 in binary) to 9(1001 in binary) because we are considering decimal numbers.

Output

image103.png
Example 1:

Input :
A = 0111 B = 1000
Output :

Y = 1 o101

Explanation: We are adding A(=7) and B(=8).
The value of binary sum will be 1111(=15).

But, the BCD sum will be 1 0101,

where 1 is 0001 in binary and 5 is 0101 in binary.

image104.png
By B, 5'1 By Ay Ay AL A

4-bit Binary Adder
S5 8, S Sy

Output
Carry

Coui 4-bit Binary Adder

(Ignored)

835,818y

Fig. 3.32 Block diagram of BCD adder

image105.png
4 BIT BINARY TO GRAY CODE CONVERTER

Truth Table

Go

G

Gray

G

Gs

By

B

Binary

B

B;

image106.png
KMAP
3By

BB
00

01

1

BB,

BBy

01

10

BiB;
00 o1 11 10 00 o1 11 10
B
0 0 0 0 0 | o 1 1 0
O 1 1 1] o | o 1 1 0
0 0 0 0 1| N o o |1 [
= T T | o | Jl o 0 L‘_,
Go=By©B; 1=B1©B;
BB,
00 o1 11 10 00 o1 1 10
By
0 1 0 1 00 0 0 1 1
0 1 0 1 ot 0 0 1 1
0 1 0 1 11 0 0 1 1
0 1 0 1 10 0 0 1 1

G;=B;

image107.png
CIRCUIT DIAGRAM

7428

BO
GO

B1
G1

)l
Lo

B3 G3

image108.png
4 BIT GRAY TO BINARY CODE CONVERTER

TRUTH TABLE

— ||

=1 L]

— ||

=] — ||
=]
=]

image109.png
REALISATION USING K MAP

3Gy
00 01 11 10

GGy
00 Y] 1] 1
01 1 0 1]
11 0 1 0 1
10 1 0 1 0

image110.png
CIRCUIT DIAGRAM

7486

GO, 1
BO

Gl 1
Bl

N
o 15 ?

B2

G3, B3

image111.png
2-Bit Comparator

A 2-bit comparator compares two binary numbers, each of two bits and produces their
relation such as one number is equal or greater than or less than the other. The figure
below shows the block diagram of a two-bit comparator which has four inputs and three
outputs.

The first number A is designated as A = A1A0 and the second number is designated as
B = B1B0. This comparator produces three outputs as G (G=1ifA>B), E(E=1,ifA=
B)and L (L=1ifA<B).

2-bit

Comparator

image4.png
Category |L|T|P| Credit | Yearof Inroduction
pcc [3[1fo] 4 209

ot |, .
S03 | Logic System Design

Preamble: The objective of the course is to familiaize leamers with the basic concepts of
Boolean algebra and digital systems. This course covers the design of simple combinational and
sequentil logic circuits, representation and arithmetic algorithms for Binary, BCD (Binary
Coded Decimal) and. Floating point mumbers which in tum are helpful in understanding
organization & design of 2 computer system and understanding how patterns of ones and zeros
can be used tostore information on computers, including mulmedia daa

Prereq:
Course Outcomes: Afer the completion of the course the stadent will be able to

il

cos co

Iiustrate decimal, binary, octal, hesadecimal and BCD mumber systems, perform
conversions among them and do the operations - complementation, addition,
subtraction, multiplication and division on binary numbers ~ (Cognitive Knowledge
level: Understand)

Simplify a given Boolean Function and design a combinational circuit o implement
€02 |the simplified function using Digial Logic Gates (Cognitive Knowledge level:
Apply)

Design combinational circuits - Adders, Code Comvertors, Decoders, Magitude.
€03 | Comparators, Parity Generator/Checker and design the Programmable Logic Devices -
ROM and PLA. (Cognitive Knowledge level: Apply)

Design sequential circuits - Registers, Counters and Shift Regisers. (Cogaitive
Knowledge level: Apply)

Use algoritims to perform addition and subtraction on binary, BCD and floating point.
‘mumbers (Cogitive Knowledge level: Understand)

co

cos

cos

image112.png
2 BIT MAGNITUDE COMPARATOR USING LOGIC GATES

TRUTH TABLE

A<B

A>B

Al |A0|BI1|BO

image113.png
K MAP REALISATION

B1BO B180
A120 00 ot 1 10 A180 00 o1 1 10
00 [1 1 1
o1 1 o1 1 1
1] 1 [1
10| |4 1 10 1
A>B=A0B0B1+A1B1+A1 A0 B0 A<B=A1ADBO+ADBOB1 + A1 BI
B1B0
A1A0 o1 1 10
00
o1 @
1 ™
1 (O]

A=B=(A0cB0)(A1681)

image114.png
Magnitude Comparator - a Magnitude Comparator is a digital comparator which
has three output terminals, one each for equality, A = B greater than, A > B and less
thanA<B

The purpose of a Digital Comparator is to compare a set of variables or unknown
numbers, for example A (A1, A2, A3, ... An, etc) against that of a constant or unknown
value such as B (B1, B2, B3,.... Bn, etc) and produce an output condition or flag depending
upon the result of the comparison. For example, a magnitude comparator of two 1-bits, (A
and B) inputs would produce the following three output conditions when compared to
each other.

A>B, A=B, A<B

Which means: Ais greater than B, Aiis equal to B, or Ais less than B

This is useful if we want to compare two variables and want to produce an output when
any of the above three conditions are achieved. For example, produce an output from a
counter when a certain count number is reached.

image115.png
Al

A0

B1

BO

7404

7404

7404

7404

> o 7408

: A=B
(A15B1) (A0BO)

A>B
A o—

a5z A1B1+A0BO

A<B
7432 A0 BO +A1B1

image116.png
« S-RFlip Flop using NOR Gate

The design of such a flip flop includes two inputs, called the SET [S] and RESET [R]. There are

also two outputs, Q and Q. The diagram and truth table is shown below.

&L Riesey

5L See

(a) Logic diagram

(after S=1, R=0)

(after 5=0, R=1)

(b) Truth table

image117.png
$=1, R=0—-Q=1, Q'=0

This state is also called the SET state.

$=0, R=1—-Q=0, Q'=1

This state is known as the RESET state.

In both the states you can see that the outputs are just compliments of each other and that

the value of Q follows the value of S.

S$=0, R=0—Q & Q’ = Remember

If both the values of S and R are switched to 0, then the circuit remembers the value of S and

R in their previous state.

$=1, R=1—Q=0, Q’=0 [Invalid]

This is an invalid state because the values of both Q and Q' are 0. They are supposed to be

compliments of each other. Normally, this state must be avoided.

image118.png
The circuit diagram and truth table is given below.

(a) Logic diagram with NAND gates

D Q
o —

af—

(b) Graphical symbol
QD | Q1)

(c) Transition table

image119.png
What is a JK Flip-flop ?
| ———————
o Aflip-flop is a circuit that has two stable
states and can be used to store state
information.

o The flip-flop can be made to change state
by signals applied to one or more control
inputs and will have one or two outputs.

image120.png
CLK

J-K Flip Flop:

2l

TRUTH TABLE
] K Qu Qu
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

image121.png
Four Modes Of Operation
e

J Q
The 4 modes of operation
are: hold, set, reset,
toggle CLK
K Q
J| K| Q| @ | Mode
Ollo Lol o Ry JK contains an internal
allolla o |l ko Active Low SR latch.
o | 1 o 1| Resets
1 1 Q Q | Toggle

image5.png
Mapping of course outcomes with program outcomes

| DD 9
«|99 D9 @ 9
« 99929 @ 9
«~ 2229 |9 9
«|22|9 9
T
C T Yor om0
70 | rgcmg e L=
07 i miy o [roes
[— e g [p—"
e

70 koo T e m———
708 e Ergr sy | o ik i

: ; Errsenn

S L e e

pr—
s 5 s s
e
Frime
e

image122.png
What are the drawbacks of JK flip flops?

the main drawback of the jk flip flop is the race around condition. it happens when both
the input is 1. In race around condition output toggles more than one time. if that happens
it will be very hard to predict the state of the flip flop. Assume present state is 1 and we are
applying j=1 and k=1. what will happen the output toggles next state should be 0. but
what happens in real scenario the output will not ended up getting 0 it will continues to
toggle 0101010101010 it will go like that.

CLOCK

' 1 stble stable
1Race-around | (memory) 1 Race-around | (memory)
1 condiion | geptefor 1 condibon 1 semge for

CLOCK =0 CLOCK =0

image123.png
Set

Reset

Master

Slave

Clk

D>

Master-slave JK Flip-Flop

image124.png
Remark

No change

No change

Truth table of Master slave JK FF

image125.png
2 Q
CP—1—¢
e R Q'
o/
(a) Logic diagram
—d1 al—
cP —
ol—

(c) Transition table

image126.png
What is counter?

» A counter is a device which stores and sometimes
displays the number of times a

particular event or process has occurred, often in
relationship to a clock signal.

» A counter is a functional unit with a finite number
of states each of which represents a number that can
be, upon receipt of an appropriate signal, increased

by unity or by a given constant.

image127.png
CLK

image128.png

image129.png
o Q, J Q. Tonext clock
CK ——> >
K Q> LsB K Q> msB
Clock lnpm—
Q,output |- LsB
Q,output | wMsB

COUNT LOO 01

count starts

10

"

image130.png
UP/DOWN Ripple Counters

In the UP/DOWN ripple counter all the FFs operate in the toggle mode. So either T flip-flops or JK flip-flops
are to be used. The LSB flip-flop receives clock directly. But the clock to every other FF is obtained from (Q
=Q bar) output of the previous FF.
= UP counting mode (M=1) - The Q output of the preceding FF is connected to the clock of the
next stage if up counting is to be achieved. For this mode, the mode select input M is at logic 1
(M=1).
= DOWN counting mode (M=0) - If M = 0, then the Q bar output of the preceding FF is connected
to the next FF. This will operate the counter in the counting mode.

image131.png
Application of counters

o Frequency counters

= Digital clock

@ Time measurement

@ Ato D converter

o Frequency divider circuits

o Digital triangular wave generator.

image6.png
Total Marks CIE Marks ESE Marks ESE Duration
150 50 100 3

Continuous Internal Evaluation Pattern:
Attendance 10 marks
Continuous Assessment Test 25 marks
Continnous Assessment Assigoment - 15 marks

Internal Examination Pattern:
Each of the two internal examinations has to be conducted out of 50 marks. Firt series test shall
be preferably conducted ater completing the first half of the syllabus and the second series test
shall be preferably conducted after complefing remaining part of the syllabus. There will be fwo
parts: Pat A and Part B. Part A contains 5 questions (preferably, 2 questions each from the
completed modules and 1 question from the partly completed module), having 3 marks for each
question adding up to 15 marks for part A. Students should answer all questions ffom Part A.
Part B contains 7 questions (preferably, 3 questions each from the completed modules and 1
question from the partly completed module), each with 7 marks. Out of the 7 questions, a student
should answer any 5.

‘End Semester Examination Pattern:
There will be fwo parts; Part A and Part B. Part A contains 10 questions with 2 questions from
each module, having 3 marks for each question. Students should answer all questions. Part B
contains 2 questions from each modile of which & student should answer any one. Each question
can have maxinnm 2 sub-divisions and carries 14 marks.

SYLLABUS
Module I

Number systems, Operations & Codes

Decimal, Binary, Octal and _Hexadecimal Number Systems- Number Base Conversions.
Addition, Subtraction, Multplication and Division of binary mumbers. Represenation of
negative mumbers- Complements, Subtraction with complements. Addition and subtraction of
'BCD, Octal and Hexadecimal mumbers. Binary codes- Decimal codes, Ertor defection codes,
Reflected code, Character coding schemes ~ ASCIL, EBCDIC.

Modsle II
Boolean Algebra

Postulates of Boolean Algebra. Basic theorems and Properties of Boolean Algebra. Boolean
Functions - Canonical and Standard forms. Simplification of Boolean Functions- Using
Kamangh- Msp Method (upto five varisbles), Don't care conditions, Product of sums

image132.png
MOD-4 Counter State Diagram

Present _

o Next State State Diagram
Q| Qu

otarty | 0| 0 | = | 0| 1

1 o|1|=|1]o0

2 10 |=]1|1

3 1| 1|=]0|0

4frepeat) | 0 | 0 | = | 0| 1

image133.png
Logic 1"

Logic 0"

Rising Edge Falling Edge

1

Count changes
state here

Synchronous Counter

Synchronous Counters are so called because
the clock input of all the individual flip-flops
‘within the counter are all clocked together at
the same time by the same clock signal

image134.png
Binary 4-bit Synchronous Up Counter

Out

(Logic 1))
&)
FFA FFB FFC FFD
J o.l JooQe J o Qc J o.,_T_.
CLK Qa | HCLK Qs | HCLK Qc | {CLK Qp
K Qa K Qs K Qc K @
1
od”

Clock Pulse

image135.png
4-bit Synchronous Counter Waveform Timing Diagram

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 0000
Count o 1 2 3 4 5 6 7 8 9 10 M 12 13 14 15

©

image136.png
Decade 4-bit Synchronous Counter

FFD

J Qo
CLK

Qa Qs Qc
4)
Logic FFA FFB FFC
AU T J a J Qc
— CLK CLK CLK
K K K
ClockPulse

image137.png
Synchronous Counter Summary

Then to summarise some of the main points about Synchronous Counters:

~ Synchronous Counters can be made from Toggle or D-type flip-flops.
v Synchronous counters are easier to design than asynchronous counters.

+ They are called synchronous counters because the clock input of the flip-flops
are all clocked together at the same time with the same clock signal.

~ Due to this common clock pulse all output states switch or change simultaneously.
~ With all clock inputs wired together there is no inherent propagation delay.

~ Synchronous counters are sometimes called parallel counters as the clock is fed in
parallel to all flip-flops.

~ The inherent memory circuit keeps track of the counters present state.
~ The count sequence is controlled using logic gates.

~ Overall faster operation may be achieved compared to Asynchronous counters.

image138.png
SHIFT REGISTER

Flip-flop is a 1 bit memory cell which can be used for storing the digital data. To increase the storage
capacity in terms of number of bits, we have to use a group of flip-flop. Such a group of flip-flop is known
as a Register. The n-bit register will consist of n number of flip-flop and it is capable of storing an n-bit
word.
The binary data in a register can be moved within the register from one flip-flop to another. The registers
that allow such data transfers are called as shift registers. There are four mode of operations of a shift
register.

o Serial Input Serial Output

o Serial Input Parallel Output

& Parallel Input Serial Output

@ Parallel Input Parallel Output

image139.png
Serial Input Serial Output

Let all the flip-flop be initially in the reset condition i.e. Q3 = Q, = Q¢ =

Qg = 0. If an entry of a four bit binary

number 11 1 1 is made into the register, this number should be applied to Dj, bit with the LSB bit applied
first. The D input of FF-3 i.e. D is connected to serial data input Dj,. Output of FF-3 i.e. Q3 is connected to

the input of the next flip-flop i.e. D, and so on.
Block Diagram

D.

CLK

FF1

al

Output

image140.png
Operation

S.N.

1

Condition

With M = 1 = Shift right operation

With M = 0 - Shift left operation

Operation

If M = 1, then the AND gates 1, 3, 5 and 7 are
enabled whereas the remaining AND gates 2, 4, 6
and 8 will be disabled.

The data at Dg is shifted to right bit by bit from FF-3
to FF-0 on the application of clock pulses. Thus with
M = 1 we get the serial right shift operation.

When the mode control M is connected to 0 then
the AND gates 2, 4, 6 and 8 are enabled while 1, 3,
5and 7 are disabled.

The data at D is shifted left bit by bit from FF-0 to
FF-3 on the application of clock pulses. Thus with M
=0 we get the serial right shift operation.

image141.png
Serial Input Parallel Output
@ In such types of operations, the data is entered serially and taken out in parallel fashion.
= Data is loaded bit by bit. The outputs are disabled as long as the data is loading.

= As soon as the data loading gets completed, all the flip-flops contain their required data, the
outputs are enabled so that all the loaded data is made available over all the output lines at the
same time.

= 4 clock cycles are required to load a four bit word. Hence the speed of operation of SIPO mode is
same as that of SISO mode.

Block Diagram

D. D Q L—D: Q D Q D- Q
FF-3 b FF2 FF-1 FF-0
——
ciK |
1 Q Q Q
————————————— Parallel output ———==========-

image7.png
simplification, Tabulation Method. Digital Logic Gates- Implementation of Boolean functions
‘using basic and universal gates.

Module Il
Combinational Logic Cireuits

Design Procedwe & Implementation of combinational logic circuits- Binary adders and
subtractors, Binary Parallel adder, Camy look ahead adder, BCD adder, Code converter,
Magnitude comparater, Decoder, Demultiplexer, Encoder, Multiplexer, ~Parity generator/
Checker

Module IV
Sequential logic circuits:

‘Flip-flops- SR, JK. T and D. Triggering of flip-flops- Master slave flip- flops, Edge- triggered
Sip- flops. Excitation able and characterisic equation. Registers- register with paralll load.
Counter design: Asynchronous counters- Binary and BCD counters, timing sequences and sfate
diagrams. Synchronous counters- Binary Up- down counter, BCD counter.

Module V
Shift registers

Shift registers — Serial In Serial Out, Serial In Parallel Out, Bidirectional Shift Register with
Parallel load. Ring counter. Johnson counter- fiming sequences and state diagrams.

Arithmetic algorithms
Algorittms for addifion and subtraction of binary mumbers in signed magnitude and 2’
complement representations. Algorithm for addifion and subfraction of BCD mumbers
‘Representation of floating point mumbers, Algorithm for addition and subfraction of floating
‘point umbers.

Programmable Logic devices
'ROM. Programmable Logic Array(PLA)- Implemention of simple circuits using PLA,

Text Books:
1M Morss Mano, Digital Logic & Computer Desiga, 4, Pearson Education, 2013
2. Thomas L Floyd, Digital Fundamentls, 10/e, Pearson Education. 2009.
3 M. Morris Mano, Computer System Architecture, 3/e, Pearson Education, 2007

Reference Books:
1. M. Morsis Mano, Michael D Cilett, Digital Design With An Introduction to the Verilog
HDL, Sle, Pearson Education, 2013,
2. Donald D Givone, Digital Principles and Design, Tata McGraw Hill, 2003

image142.png
Parallel Input Serial Output (PISO)

Data bits are entered in parallel fashion.

The circuit shown below is a four bit parallel input serial output register.

Output of previous Flip Flop is connected to the input of the next one via a combinational circuit.
The binary input word By, B1, By, B3 is applied though the same combinational circuit.

There are two modes in which this circuit can work namely - shift mode or load mode.

Load mode

When the shift/load bar line is low (0), the AND gate 2, 4 and 6 become active they will pass B+, By, B3 bits
to the corresponding flip-flops. On the low going edge of clock, the binary input Bg, By, B2, B3 will get
loaded into the corresponding flip-flops. Thus parallel loading takes place.

Shift mode

When the shift/load bar line is low (1), the AND gate 2, 4 and 6 become inactive. Hence the parallel loading
of the data becomes impossible. But the AND gate 1,3 and 5 become active. Therefore the shifting of data
from left to right bit by bit on application of clock pulses. Thus the parallel in serial out operation takes
place.

image143.png
Block Diagram

image144.png
Parallel Input Parallel Output (PIPO)
In this mode, the 4 bit binary input By, B1, By, B is applied to the data inputs Do, D1, Dy, D3 respectively of

the four flip-flops. As soon as a negative clock edge is applied, the input binary bits will be loaded into the

flip-flops simultaneously. The loaded bits will appear simultaneously to the output side. Only clock pulse is
essential to load all the bits.

Block Diagram

e Parallel output —— -
B:

B: B. B-
L D: Q: D: Q: D: Q D- Q
— FF-3 FF-2 FF1 FF-0
CLK | | I
Q Q Q Q

| ===mmmme- Parallel output ————————————-

image145.png
Bidirectional Shift Register

If a binary number is shifted left by one position then it is equivalent to multiplying the original
number by 2. Similarly if a binary number is shifted right by one position then it is equivalent to
dividing the original number by 2.

Hence if we want to use the shift register to multiply and divide the given binary number, then we
should be able to move the data in either left or right direction.

Such a register is called bi-directional register. A four bit bi-directional shift register is shown in fig.

There are two serial inputs namely the serial right shift data input DR, and the serial left shift data
input DL along with a mode select input (M).

image146.png

image147.png
Ring Counter

Ring counter is a typical application of Shift resister. Ring counter is almost same as the shift counter.
The only change is that the output of the last flip-flop is connected to the input of the first flip-flop in
case of ring counter but in case of shift resister it is taken as output. Except this all the other things are

same.

No. of states in Ring counter = No. of flip-flop used

image148.png
L D O D, Q D, Q D,
o FF FF, o> FFy FF,
o, G a-
cK L
Fig. 10.64 Logic diagram of a 4-bit ring counter using D flip-flips.
J Q, Jz Q, Jy Q o Q,
A> FF, FB FF, o> FF
K 0 o Koo G
Bty

Fig. 10.65

Logic diagram of a 4-bit ring counter using J-K flip-flops.

image149.png
Q, Q, Q, Q, Afterclock pulse
T BRopil 0
0100 1
8}, J0.2 10 2
0 §p 0k 1 3
{00 i (o)
5 1 0¥ 5
0010 6
000 1 7
(a) Sequence table:

(b) State diagram
Fig. 10.66 Sequence table and state diagram of a 4-bit ring counter.

image150.png
4-bit Johnson Ring Counter

4-bit Parallel Data Output
o Qs Qc Q'
4 4

Clock | L Inversion

.
of output
Clear l l l fed back

image151.png
Twisted Ring Counter —

It is also known as switch-tail ring counter, walking ring counter or Johnson counter. It connects
the complement of the output of the last shift register to the input of the first register and
circulates a stream of ones followed by zeros around the ring.

Twisted Ring Counter

Here, we use Clock (CLK) for all the flip-flops.

image8.png
Number System

In digital electronics, the number system is used for representing
the information. The number system has different bases and the most
common of them are the decimal, binary, octal, and hexadecimal. The base or
radix of the number system is the total number of the digit used in the

number system. Suppose if the number system representing the digit from 0 -
9 then the base of the system is the 10.

image152.png
Truth Table for a 4-bit Johnson Ring Counter

ClockPulse
0 0 0 0 0

1 1 0 0 0
2 1 1 0 0
3 1 1 1 [
4 1 1 1 1
5 [1 1 1
6 0 0 1 1
7 0 0 0 1

image153.png
Programmable Logic Devices (PLDs)

All use AND-OR structure- differ in which is programmable

Programmable | Programmable

InpiEs Connections ORarray > Oups

Programmable read-only memory (PROM)
Programmable _| Programmable N

lnpmscolmﬁanns AND array * Outputs
Programmable array logic (PAL) device

Inputs Progammable _f programmable Programmable | Programmable 3 o

PULS Connections AND array connections ORarray utputs

Programmable logic array (PLA)

image154.png
D,
O
o
Big:: = {0 U U

image155.png
PLA STRUCTURE

PLA STRUCTURE
‘m Input A:cD OR gate
= Buffers & Array
lines | * . Py s

[

“n’ output
lines

image156.png
PROCEDURE FOE IMPLEMENTATION:

* Write the logic function in SOP form.

* Minimize the function

+ Decide the input connections of AND matrix for generating the product
terms.

« Decide the input connections of OR matrix for generating the sum of
products.

« Connect the output of OR gates to the invert/non-invert matrix,
depending upon the requirement.

* Program the PLA.

image157.png
* BUFFER-INVERTER

(TRUE OUTPUT) A

A -
A
(COMPLEMENTED OUTPUT)
— (TRUE OUTPUT)
A »Q A >¢ A
\‘A
(COMPLEMENTED OUTPUT)

Fig.2

image158.png
EXAMPLE -1: A combinational circuit is defined by the following function
F, (AB.C)=Em(45,7)
F (AB,C) =¥m(35,7)
Implement this circuit with a PLA having 3 inputs, 3 product terms and 2
outputs. Also write the PLA programming table.
SOLUTION:
STEP 1: Write the Boolean Expression in minimum SOP form.

(Note: use minimization technique. Here we use K-map)
Be BC

A0 om0 Ao

image159.png
Number of inputs =3

Number of product terms = 4, in which ‘AC’ is common in both
function F| and F, , so number of product terms =3

Number of AND gates = Number of product terms = 3
Number of OR gates = Number of outputs = 2
Logic diagram is shown in fig. 4

image160.png
STEP-2 : LOGIC DIAGRAM

A
R :
A
i) :
z B
<P 1 ¢
C
INPUT
o Uoy
AB| Ac| BC ~
=AB+AC
gl
|

image9.png
bit (being a contraction of Blnary digiT)

image10.png
Types of Number Systems
Some of the important types of number system are

1. Decimal Number System
2. Binary Number System
3. Octal Number System

4. Hexadecimal Number System

These number systems are explained below in details.

image11.png
1. Decimal Number Systems

The number system is having digit 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; this number
system is known as a decimal number system because total ten digits are
involved.The base of the decimal number system is 10.

2. Binary Number Systems

The modern computers do not process decimal number; they work with
another number system known as a binary number system which uses only
two digits 0 and1.The base of binary number system is 2 because it has only
two digit 0 and 1.The digital electronic equipments are works on the binary
number system and hence the decimal number system is converted into binary
system.

image12.png
Decimal Binary Octal Hexadecimal

0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 c
13 1101 15 D
14 1110 16 E

3 1111 17 F

image13.png
3. Octal Numbers

The base of a number system is equal to the number of digits used, i.e., for
decimal number system the base is ten while for the binary system the base is
two. The octal system has the base of eight as it uses eight digits 0, 1, 2, 3, 4,
5,6,7.

All these digits from 0 to 7 have the same physical meaning as by decimal
symbols, the next digit in the octal number is represented by 10, 11, 12,
which are equivalent to decimal digits 8, 9, 10 respectively. In this way, the
octal number 20 will represent the decimal digit and subsequently, 21, 22, 23..
Octal numbers will represent the decimal number digit 17, 18, 19... etc. and so
on.

image14.png
4. Hexadecimal Numbers

These numbers are used extensively in microprocessor work.The hexadecimal
number system has a base of 16, and hence it consists of the following sixteen
number of digits.

0,123, 4,5,6,7,89,A8CD,E F

The size of the hexadecimal is much shorter than the binary number which
makes them easy to write and remember. Let 0000 to 000F representing
hexadecimal numbers from zero to fifteen, then 0010, 0011, 0012, ...etc. Will
represent sixteen, seventeen, eighteen... etc. till 001F which represent thirty
open and so on.

image15.png
Binary to Decimal conversion

 Binary to Decimal: multiply each digit by its
weighted position, and add each of the
weighted values together or use expansion
form directly.

6(5(4]3]|2|1|0

Bit position: 7

Binary exponential: 2 [2° [2° | 2*| 2’| 2 2'| 2

Value if bit = 1 128| 64|32 (168|421
Figure Components of a byte
27 |29 (20|28 |2 2% | 2|2

image16.png
Examplel : Binary to decimal Conversion

* The value of binary 01101001 is decimal 105. This is worked

out below:

27 26 25 24 2 22 21 20
128 64 32 16 8 4 2 1
(0] 1 1 (0] 1 (0] (0] 1

1X1 =1+

OX2 =0+

0X4 =0+

1X8 =8+

OX16 =0+

1X32 =32+

1X 64 = 64+

0X128

Answer: 105

image17.png
Decimal to Binary conversion

Repeated Division By 2

» For this method, divide the decimal number by 2,

 If the remainder is 0, on the right side write down a 0.

+ If the remainder is i, write down a 1.

* When performing the division, the remainders which
will represent the binary equivalent of the decimal
number are written beginning at the least significant

digit (right) and each new digit is written to more
significant digit (the left) of the previous digit.

image18.png
Example 1 and 2 : Decimal to Binary
Conversion

1. Convert 160 into binary 2. Convert 17 into binary
(160) 1

160

80 0

40 0

20 0

N NNN

10 0

el |-
|

i

0 Binary number: 10001

* (160) ,,= (10100000), (17) ;0= (10001),

image19.png
Binary to Hexadecimal Conversion

* To do this make a group of 4 bits each on
either side of binary point and replace each 4
bit group by equivalent hexadecimal digit.

Staring
11111011101110010 |, "%,
meﬂocf(01101110 » Origmal binary number
[A119011101110010] |55
0110 1110 » Grouped binary number
6 E » Hex value of grouped binary
number
Wike down
e b
e ot bk (01101110); = (6E)is —» Convened value

11111011101110010,= 1F772,,

image20.png
Example 1: Convert (11110101011.0011), into
corresponding hexadecimal

» Step 1. Firstly, we make pairs of four bits on both sides
of the binary point.

111 1010 1011.0011
* On the left side of the binary point, the first pair has

three bits. To make it a complete pair of four bits, add
one zero on the extreme side.

0111 1010 1011.0011

» Step 2. Then, we write the hexadecimal digits, which
correspond to each pair.

(011110101011.0011),=(7AB.3),

image21.png
Hexadecimal to Binary Conversion

* To convert hexadecimal to binary replace each
hexadecimal bit by its 4 bit binary group.

/J\\ F3Al
Ao T

. 11110011 1010 0001

image22.png
Decimal to Hexadecimal Conversion

* To do this successively divide the given
decimal number by 16 till the quotient is zero.
The remainder are read from bottom to top to

get the equivalent hexadecimal number.

Remainder

16)2861 Dec. Hex.
16178 13 D

611 2 2
01 B

image23.png
Binary to Octal conversion

Binary to octal

001010.101

(@ make pairs of 3 digits

o?1 010. 101
> now put the decimal
value of each pairs

g|l=|s|=|2|§

001 jﬂ 101

1

w

(001010.101) = (12.5),

If digits are not in pairs of 3 then Place extra O(left end
of integer and right end of fractional number)

1010.01

1 010. 01

— — —

001 010. 010
1 2.2

(0010.01),= (12.2),

image24.png
Octal to Binary conversion

Octal to Binary

12.5
Y
001010 101
(12.5)= (001010.101),

ele(s|z|e|z|8|]

721
/ 1N\

111 010 001
(721);= (111010001),

image25.png
Binary Number representation

Binary Number
Representation
Only for For both Positive and
Positive Numbers Negative Numbers
ﬁ F—

Unsigned Signed
Representation Representation
Unambiguous
(only one 0)

|

)

Sign-Magnitude 1's complement 2's complement
form form form

Ambiguous Ambiguous Unambiguous

(two 0's) (two 0's) (only one 0)

image26.png
1. Sign-Magnitude form

* In this form, a binary number has a bit for a sign symbol.

» Ifthis bit is set to 1, the number will be negative else the
number will be positive if it is set to 0.

» Apart from this sign-bit, the n-1 bits represent the
magnitude of the number.

* Positive number is represented with ‘0" at its most significant bit (MSB).

* Negative number is represented with ‘1" at its most significant bit (MSB).

/—> Magnitude bits

+18 00010010
— Sign bit
Magnitude bits
-18 10010010

\;b Sign bit

image27.png
2. One’s Complement Form

* One’s Complement or 1’s Complement as it is also termed,
is another method which we can use to represent negative
binary numbers in a signed binary number system.

* In one’s complement, positive numbers (also known as non-
complements) remain unchanged as before with the sign-
magnitude numbers.

* Negative numbers however, are represented by taking the
one’s complement (inversion, negation) of the unsigned
positive number. Since positive numbers always start with a
“0”, the complement will always start with a “1” to indicate
a negative number.

image28.png
* The one’s complement of a negative binary number is the
complement of its positive counterpart, so to take the
one’s complement of a binary number, all we need to do
is change each bit in turn.

* Eg: 1’s complement of 1010.11 =0101.00

YYYYYYYY

image29.png
One's Complement

Invert all bits. Each 1 becomes a 0, and each 0 becomes a 1.

Original Value One's Complement
0 1
1 d 0
1010 . o1l
1111 0000
11110000 00001111

10100011 01011100

11110000 10100101 00001111 01011010

image30.png
3. Two’s Complement Form

* By inverting each bit of a number and adding plus 1 to its
least significant bit, we can obtain the 2's complement of
a number.

* The negative numbers can also be represented in the form
of 2's complement. In this form, the binary number also
has an extra bit for sign representation as a sign-

magnitude form.
00010100 — Binary number | Addition table |
: sum Carry |
11101011 —> One'scomplement o+0=0 o
S o0+1 =1 o
C1+0=1 0
11101011 i e

]
11101100 —> 2s complement

image31.png
Representation of Numbers in signed form, one’s
complement and two’s complement

1. If the number is positive, the magnitude is represented in its true
binary form and a sign bit ‘0 is placed in front of the MSB.

2. If the number is negative, the magnitude is represented in 1’s or 2’s
complement form and a sign bit ‘1’ is placed in front of the MSB.

¢ Eg: 0110011 =+51 in sign-magnitude form, 1’s or 2’s complement
form

111001
1 11Vul

1 [DOV PP SUR P S) A
1 =21 111 511 [MIagnituac 101
¢ 1001100 =-51in 1’s complement form

¢ 1001101 =-51 in 2’s complement form $1/2=25 : Remainderis 1 -+ LSB

25/2=12 :Remainder s 1

12/2 =6 :Remainder is 0

6/2=3 :Remainderis0

3/2=1 :Remainderis 1
110011

1/2=0 :Remainderis 1 - MSB

image32.png
Binary Addition

* The four basic rules for adding binary digits (bits) are as

follows
0+0=0 Sumof0withacaryof 0
0+ 1=1 Sumof1withacaryof 0
1+0=1 Sumof 1 withacarry of 0
1+ 1=10 Sumof0withacarryof |

* When binary numbers are added, the last condition creates a
sum of 0 in a given column and a carry of 1 over to the next

column to the left, as illustrated in the following addition of
11+1: Carry Carry

image33.png
Binary Subtraction

* The four basic rules for subtracting bits are as follows:

0-0=0
1-1=0
1-0=1
10-1=1 0~ Ivithabomowofl
* When subtracting numbers, sometimes there will be
borrow from the next column to the left. A borrow is
required in binary only when you try to subtract a 1 from
a0.

* In this case, when a 1 is borrowed from the next column
to the left, a 10 is created in the column being subtracted,
and the last of the four basic rules just listed must be
applied.

image34.png
Examples:

Perform the following binary subtractions:

(@ 11-01 () 11 -10
Solution
@ 11) 11
-0t =10
10 01

No borrows were required in this example. The binary number 01 is the same as 1.

Subtract 011 fi 101. Left column: Middle column:
s rom When a 1 is borrowed, Borrow 1 from next column
Solution a0isleft, s00 - 0=0. to the left, making a 10 in
101 \ this column, then 10 — 1 = 1.
—011 9

=NL PO Right column:
010 =01l 1-1=0
010

image35.png
POS + NEG - POS Answer

Take the 2’s complement of the negative number and use
regular binary addition.

9 — 00001001
+ (-5) + 11111011

4 «—)1] 0\0000100

8% Bit = 0: Answer is Positive
Disregard 9% Bit

00000101
WAL o

11111010 Complement
+1 Process

11111011

image36.png
Floating point representation

Binary point floats to the right of the most significant 1
Similar to decimal scientific notation

It is capable of representing very large and very small numbers
without an increase in the number of bits and also for representing
numbers that have both integer and fractional components.

For example, write 273, in scientific notation:
- 273 =2.73 x 10?
In general, a number is written in scientific notation as:
+M x BE
— M = mantissa
— B =base
— E = exponent
— Inthe example, M=2.73, B=10,and E=2

image37.png
Single precision Floating point representation
Problem :

Convert the decimal number 3.248 X 10" to a single-precision floating-point binary number.

Solution
Convert the decimal number to binary.
3.248 x 10* = 32480 = 111111011100000, = 1.11111011100000 X 2'#

The MSB will not occupy a bit position because it is always a 1. Therefore, the man-
tissa is the fractional 23-bit binary number 11111011100000000000000 and the biased
exponent is

14 + 127 = 141 = 10001101,

The complete floating-point number is

0 10001101 11111011100000000000000

Related Problem
Determine the binary value of the following floating-point binary number:
010011000 100001000101001 10000000

image38.png
Binary codes

* Binary codes are the group of symbols which
are used to encode the numbers, alphabets or
special characters by using a group of bits.

This group of bits is known as binary codes.

» Digital data is represented, stored and
transmitted as groups of binary digits also
known as binary code.

image39.png
BCD code

The BCD code is the 8.4,2,1 code. 8, 4, 2, and
1 are weights

Widely used code
BCD is a weighted code

This code is the simplest, most intuitive binary
code for decimal digits and uses the same
powers of 2 as a binary number, but only
encodes the first ten values from O to 9.The
smallest BCD number is (0000) and the largest
is (1001).

image40.png
Decimal to BCD Conversion

Sr. No. Decimal Number BCD Code
d 8 1000
2 47 01000111
3 345 0011 0100 0101
4 99 1001 1001
5 10 0001 0000

image41.png
1. Excess 3 code

It is obtained by adding 3 or 0011 to decimal number.

It is a self complementing and non weighted code.

Used for performing arithmetic operation in digital computers.

It is also a sequential and reflective code.

] Excess-3 Code=
Decimal No. BCD Code BCD + Excess-3
o 0000 0011
1 0001 0100
6 0010 0101
% 0011 0110
" 56 0111
- 0101 1000
& 0110 1001
N 0111 1010
5 1000 1011
- 1001 1100

image42.png
2. Reflective code or Gray code

Decimal Binary Grey Code
* Belongs to a group called |[g 0000 |0000
minimum change code. 1 0001 |0001
. . . 2 0010 |0011
o Itis n(.)t useful for arithmetic |3 0011|0010
operations but find |4 0100 |0110
applications in input and |° 0101 j0111
. 6 0110 |0101

output devices.

v 7 0111 |0100
* Only one bit in this code |8 1000 |1100
changes when moving from |° 1001, 1101
! o th (H |10 1010 1111
one step to the mnextz 1, 1011 |1110
adjacent code numbers differ |12 1100 |1010
by only one bitlt is also |13 1101|1011
called unit distance code. i et e
15 1111|1000

image43.png
Binary-to-Gray Code Conversion

1. The most significant bit (left-most) in the Gray code
1s the same as the corresponding MSB in the binary
number.

2. Going from left to right, add each adjacent pair of
binary code bits to get the next Gray code bit.
Discard carries.

* For example, the conversion of the binary number
10110 to Gray code is as follows:

l=+=0-+=21-#+=21-+-0 Binary
ol 4

1 1 | 0 1 Gray
The Gray code is 11101.

image44.png
Gray-to-Binary Code Conversion

* The most significant bit (left-most) in the binary code is
the same as the corresponding bit in the Gray code.

* Add each binary code bit generated to the Gray code
bit in the next adjacent position. Discard carries.

* For example, the conversion of the Gray code word
11011 to binary is as follows:

1 0 0
The binary number is 10010.

image45.png
C. Alphanumeric Codes

A binary bit can represent only two symbols ‘0’ and “1°. But it is not
enough for communication between two computers because there
we need many more symbols for communication. These symbols
are required to represent - 26 alphabets with capital and small letters
- Numbers from 0 to 9 - Punctuation marks and other symbols

Alphanumeric codes represent numbers and alphabetic characters.
They also represent other characters such as punctuation symbols
and instructions for conveying information.

Therefore instead of using only single binary bits, a group of bits is
used as a code to represent a symbol.

An alphanumeric code should at least represent 10 digits and 26
letters of alphabet i.e. total 36 items.

There are ASCII code and EBCDIC code under alphanumeric
codes.

image46.png
1. ASCII Codes

The American Standard Code for Information Interchange is
a character-encoding scheme originally based on the English
alphabet.

ASCII codes represent text in computers, communications

equipment, and other devices that use text.

Most modem character-encoding schemes are based on

ASCII, though they support many additional characters.

ASCII developed from telegraphic codes and it uses 7 bit
code to represent data.

Its first commercial use was as a seven-bit tele-printer code

promoted by Bell data services.

image47.png
2.EBCDIC (Extended Binary Coded
Decimal Interchange Code)

8-bit code for representing data

Total 256 characters are possible, however all are
not used.

PP PR R |
ll lb U C Standdaida cou
There is no parity bit used to check error in this
code set.

1) PN PO
i Iarge Computers.

IBM invented this code to extend the Binary
Coded Decimal which existed at that time. All the
IBM computers and peripherals use this code.

image48.png
Boolean Operations and Expressions
Boolean algebra is the mathematics of digital logic forwarded by
Mr.Boole in 1800.

A basic knowledge of Boolean algebra is important for the study
and analysis of logic circuits.

Variable, complement, and literal are terms used in Boolean
algebra

A variable is a symbol (usually an italic uppercase letter or word)
used to represent an action, a condition, or data. Any single
variable can have only a 1 or a 0 value.

The complement is the inverse of a variable and is indicated by a
bar over the variable (overbar). i

For example, the complement of the variable A is

IfA=1,then A=0.If A= 0, then A= 1. The complement of the
variable A is read as “not A” or “A bar.”

Sometimes for example, B’ indicates the complement of B.

image49.png
Boolean Addition

* Boolean addition is equivalent to the OR operation.

0+0=0 0+1=1 1+0=1 1+1=1

VIRVIRVIRv

* In Boolean algebra, a sum term is a sum of literals. In
logic circuits, a sum term is produced by an OR
operation.

* sum term is equal to 1 when one or more of the literals in
the term are 1. A sum term is equal to 0 only if each of the
literals 1s 0.

image50.png
Boolean Multiplication

* Boolean multiplication is equivalent to the AND

operation.
0E0EDl (0-1=0 [EOED EENE

* In Boolean algebra, a product term is the product of
literals. In logic circuits, a product term is produced by an
AND operation

* A product term is equal to 1 only if each of the literals in
the term is 1. A product term is equal to 0 when one or
more of the literals are 0.

image51.png
Properties of Boolean

PROPERTY
Commutative
Associative
Distributive
Identity
Complement

De Morgan'’s law

Algebra

AND
AB = BA
(AB) C=A (BC)
A (B +C) = (AB) + (AC)
A1=A
AA)=0
(AB)' = A'OR B'

OR

A+B=B+A
A+B)+C=A+(B+0C)
A+(BC)=(A+B)(A+C)

A+0=A
A+(A)=1
(A +B)' =AB'

image52.png
Basic Rules of Boolean Algebra

1 A+0=A 7. A-A=A
2. A+1=1 AR=0

3. A0-0 A=

4. A=A 10. A+AB= A

5. A+tA=A 1. A+EB=A+B

6. A+R=1 12. (A+B)(A+C)= A+BC

DeMorgan's Theorem

(BB) = (A + B)

(A + B) = (A B)

image53.png
A + AB

1 Factoring A out of both terms
A1 + B)
1 Applying identity A+1 =1
A
1 Applying identity 1A = A

A

image54.png
A+AB=A+B Thisrule can be proved as follows:
A+AB=(A+ AB) + AB Rule 10:A = A + AB
= (AA + AB) + AB Rule 7:A = AA
=AA + AB + AA + AB Rule 8: adding AA = 0

=A+A)A+B) Factoring
=1-(4+B Rule6:A + 4 = 1
=A+B Rule 4: drop the 1

(A + B)(A + C) = A + BC This rule can be proved as follows:

(A+ B)A+ C)=AA + AC + AB + BC Distributive law
=A+AC+AB+BC RuleT:AA=A
=A(l + C) + AB + BC Factoring (distributive law)
=A-1+AB+BC Rue2:1+C=1
=A(l + B) + BC Factoring (distributive law)
=A-1+BC Rule2:1 + B =1
=A+BC Rule4d:A-1=A

image55.png
DeMorgan’s Theorems

* DeMorgan, a mathematician who knew Boole,
proposed two theorems that are an important part of
Boolean algebra.

DeMorgan’s theorems provide
mathematical verification of the equivalency of the
NAND and negative-OR gates and the equivalency of

the NOR and negative-AND gates.

To apply DeMorgan’s theorem, break the bar over the
product of variables and change the sign from AND
to OR.

image56.png
De Morgan’s Theorem - Statements

The complement of a product of variables is equal to the sum of the complements
of the variables.

Stated another way,

The complement of two or more ANDed variables is equivalent to the OR of the
complements of the individual variables.

The formula for expressing this theorem for two variables is

so ek &

The complement of a sum of variables is equal to the product of the complements
of the variables.

Stated another way,

The complement of two or more ORed variables is equivalent to the AND of the
complements of the individual variables.

The formula for expressing this theorem for two variables is

X+¥=XY

image57.png
Simplify the below expression

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

A+ BC + DE + F)

Identify the terms to which you can apply DeMorgan’s theorems, and think of
each term as a single variable. Let A + BC = X and D(E + F) = Y.
Since X + ¥ = XV,

(A + BC) + (D(E + F)) = (A + BC)D(E + F))

Use rule 9 (/T = A) to cancel the double bars over the left term (this is not part
of DeMorgan’s theorem).

(A + BC)(D(E + F)) = (A + BC)(D(E + F))

Apply DeMorgan’s theorem to the second term.

(A + BC)D(E + F)) = (A + BC)(D + (E + F))

Use rule 9 (Z = A) to cancel the double bars over the E + F part of the term.

(A+BC)YD +E+F)=(+BC)D +E+F)

image58.png
The Sum-of-Products (SOP) Form

A product term is defined as a term consisting of the product
(Boolean multiplication) of literals (variables or their
complements).

When two or more product terms are summed by Boolean
addition, the resulting expression is a sum-of-products (SOP).

Some examples are
AB + ABC

ABC + CDE + BCD
AB + ABC + AC

In an SOP expression can contain a single-variable term.

In an SOP expression, a single overbar cannot extend over
more than one variable; however, more than one variable in a
term can have an overbar.

image59.png
Conversion of a General Expression to
SOP Form

* Any logic expression can be changed into SOP
form by applying Boolean algebra techniques.

Convert each of the following Boolean expressions to SOP form:

(@ AB+B(CD+EF)) A+BB+C+D) () A+B)+ @+B+C

Solution

(a) AB + B(CD + EF) = AB + BCD + BEF

(b) (A+B)(B+C+D) AB + AC + AD + BB + BC + BD
© A+B+C= (A+B)C=(A+B)C=AC+BC

image60.png
Standard SOP

* A standard SOP expression is one in which all the
variables in the domain appear in each product term in the
expression.

ABCD + ABCD + ABCD

» Converting Product Terms to Standard SOP Each product
term in an SOP expression that does not contain all the
variables in the domain can be expanded to standard form
to include all variables in the domain and their
complements.

* As stated in the following steps, a nonstandard SOP
expression is converted into standard form using Boolean
algebrarule 6, (A + A = 1)

image61.png
Example Obtain the canonical sum of product form of the function
Y(AB)=A+B

Solution The given function containing the two variables A and B has the variable

B missing in the first term and the variable A missing in the second. Therefore, the

first term has to be multiplied by (B+ B), the second term by (A+A) as given

below:
A+B=A-1+B-1

=A-(B+B)+B-(A+A)

= AB+AB+BA+BA

=AB+AB+AB (- AB+AB=AB)
Y(A,B)= A+B=AB+AB+AB

image62.png
The Product-of-Sums (POS) Form

A sum term was defined as a term consisting of the sum (Boolean
addition) of literals (variables or their complements).

When two or more sum terms are multiplied, the resulting
expression is a product-of-sums (POS).

Some examples are v _
A+BA+B+0
A+B+0O(C+D+EB+C+D)

A+BA+B+OA+ 0

A POS expression can contain a single-variable term.

In a POS expression, a single overbar cannot extend over more
than one variable; however, more than one variable in a term can
have an overbar. F

image63.png
The Standard POS Form

* POS expressions in which some of the sum terms do not
contain all of the variables in the domain of the
expression. For example,

A+B+CA+B+D)YA+B+C+D)

* A standard POS expression is one in which all the
variables in the domain appear in each sum term in the
expression. For example,

A+B+C+DA+B+C+DYA+B+C+D)

* Any nonstandard POS expression (referred to simply as
POS) can be converted to the standard form using
Boolean algebra.

image64.png
Convert the following Boolean expression into standard POS form:

(A+B+CO)B+C+DA+B+C+D)

Solution

The dgmain of lhE POS expression is A, B, C, D. Take one term at a time. The first term, A + B+C,is missing variable
Dor D, soadd DD and apply rule 12 as follows:

A+B+C=A+B+C+DD=A+B+C+DA+B+C+D)

The second term, B + C + D, is missing variable A or A, s0 add AA and apply rule 12 as follows:
B+C+D=B+C+D+AA=(A+B+C+D@A+B+C+D)

The third term, A + B + C + D, is already in standard form. The standard POS form of the original expression is as follows:

(A+B+CB+C+DA+B+C+D)=
(A+B+C+DA+B+C+DA+B+C+DA+B+C+DA+B+C+D)

image65.png
Feel a little difficult using Boolean algebra laws,
rules, and theorems to simplify logic?

1 A K-map provides a systematic method for
simplifying Boolean expressions and, if properly
used, will produce the simplest SOP or POS
expression possible, known as the minimum

expression.

image66.png
2 Variable K-Map

2 variables have 2" = 22 = 4 minterms. Therefore there are 4 cells (squares) in 2 variable K-map for
each minterm.

Consider variable A & B as two variables. The rows of the columns will be represented by variable B.

The square facing the combination of the variable represents that min term as shown in fig below.

B
AN 1

image67.png
A general representation of a 2 variable K-map plot is shown below.

B 5 1
A
0 1
0 A'B AB
2 3
1 AB’ AB

image68.png
3 Variable K-Map

3 variables make 2"=23=8 min terms, so the Karnaugh map of 3 variables will have 8 squares(cells)
as shown in the figure given below.

image69.png
SOP FORM
1. K-map of 3 variables-
Z= 3AB.C(13,6,7)

no need of this group as
we've already covered those 1's

Groups of two elements
in one group

image70.png
From red group we get product term—
AC
From green group we get product term—

AB
Summing these product terms we get- Final expression (A'C+AB)

image71.png
01
11
10

AB+BC+ABC

image1.jpeg

image72.png
AB+AC +ABD D+ABC+BC

image73.png
01

11

10

cD

00 01 11 10 43 00 o1
1)1 00 | 1
111 1) o (1 1

]y
SnEEE

image74.png
10

11

ABC +ABCD

00 01
Without “don’t care”
Y

image75.png
5 Variables K-Map

5 variables have 32 min terms,which mean 5 variable karnaugh map has 32 squares (cells).

A 5-variable K-map is made using two 4-variable K-maps. Consider 5 variables A,B,C,D,E. their 5
variable K-map is given below.

image76.png
Logic Gates-

« Logic gates are the basic building blocks of any digital circuit.
« There are 3 basic logic gates- AND, NOT, OR.
« Logic gates are classified as-

Logic Gates

Basic Logic Gates Universal Logic Gates Other Logic Gates

AND NOT OR NAND NOR EX-OR EX-NOR
Gate Gate Gate Gate Gate Gate Gate

image77.png
1. AND Gate-

« The output of AND gate is high (‘1) if all of its inputs are high (‘1).
« The output of AND gate is low (‘0") if any one of its inputs is low (‘0").

Logic Symbol-
The logic symbol for AND Gate is as shown below-
A —
Y=AB
B
A B Y=AB
2-Input AND Gate
0 o o
o 1 o
1 o o
1 1 1

Truth Table

image78.png
2. OR Gate-

« The output of OR gate is high (‘") if any one of its inputs is high (‘1").
« The output of OR gate is low (‘0") if all of its inputs are low (‘0").

Logic Symbol-

The logic symbol for OR Gate is as shown below-

A
Y=A+B
B
A B Y=A+B
2-Input OR Gate
o o 0
0 1 1
1 0 1
1 1 1

Truth Table

image79.png
3. NOT Gate-
« The output of NOT gate is high (‘1') if its input is low (0').
« The output of NOT gate is low (‘0") if its input is high (‘1).
From here-
« Itis clear that NOT gate simply inverts the given input.
« Since NOT gate simply inverts the given input, therefore it is also known as Inverter Gate.
Logic Symbol-

The logic symbol for NOT Gate is as shown below-

A Y=A
A Y=
0 1
NOT Gate
1 0

Truth Table

A

image80.png
1. NAND Gate-

+ ANAND Gate is constructed by connecting a NOT Gate at the output terminal of the AND Gate.
« The output of NAND gate is high (‘') if at least one of its inputs is low (‘0").
« The output of NAND gate is low (‘0") if all of its inputs are high (‘1').

Logic Symbol-

The logic symbol for NAND Gate is as shown below-

A — I
Y =AB
B
A B Y =(AB)
2-Input NAND Gate o N
) 1 1
1 0 1
1 1 0

Truth Table

image81.png
2. NOR Gate-

+ ANOR Gate is constructed by connecting a NOT Gate at the output terminal of the OR Gate.
« The output of OR gate is high (‘1') if all of its inputs are low (‘0').
« The output of OR gate is low (‘") if any of its inputs is high (‘1").

Logic Symbol-

The logic symbol for NOR Gate is as shown below-

A
Y=A+B A B Y=A+B
o o 1
2-Input NOR Gate ° ' °
1 0]
1 1 0

Truth Table

image2.jpeg
Since 1968

image82.png
The Exclusive-NOR Gate

Finally, our last gate for analysis is the Exclusive-NOR gate, otherwise known as the XNOR gate. It
is equivalent to an Exclusive-OR gate with an inverted output. The truth table for this gate is
exactly opposite as that of the Exclusive-OR gate:

Exclusive-NOR gate Output

Input
g :) Output
Inputg.
Equivalent Gate Circuit

Input ,
Inputg jD—Do— Suipot

o|o

-“|=lOo|lC|>
=|o|=|o|D

Y=(A®B)=(A.B+A.B)

image83.png
Combinational Circuits

Combinational circuit is a circuit in which we combine the different gates in the circuit, for example
encoder, decoder, multiplexer and demultiplexer. Some of the characteristics of combinational
circuits are following -

@ The output of combinational circuit at any instant of time, depends only on the levels
present at input terminals.

@ The combinational circuit do not use any memory. The previous state of input does not have
any effect on the present state of the circuit.

= A combinational circuit can have an n number of inputs and m number of outputs.

Block diagram

A— I

B — — B

C ——— Combinational —— C’
circuit

n— e m

image84.png
Combinational Logic Circuit
Logical Functions

i

Converters

282
§°8
2

image85.png
Half Adder

Half adder is a combinational logic circuit with two inputs and two outputs. The half adder circuit is
designed to add two single bit binary number A and B. It is the basic building block for addition of
two single bit numbers. This circuit has two outputs carry and sum.

Truth Table

Block diagram

Inputs | Output
A— Sum'’s’ Al B

ofo oo

Half .

01|10

B Carry ¢’)

SUM Sum=AXORB

Carry Cary=AANDB

image86.png
Full Adder

Full adder is developed to overcome the drawback of Half Adder circuit. It can add two one-bit
numbers A and B, and carry c. The full adder is a three input and two output combinational circuit.

Block diagram Truth Table

A e

Cin

Circuit Diagram

o>

image87.png
Half Subtractor |

A Subtractor is a digital logic circuit in electronics that performs the operation of subtraction of two
number. Subtractors are classified into two types: half subtractor and full subtractor. The half
subtractor (HS) circuit has two inputs: A and B, which subtract two input binary digits and generate
two binary outputs i.e. borrow and difference.

. D
Difference
A Difference L
Half
Subtractor
B Borrow
Borrow
Half subtractor block diagram
Implementation of HS feaic b
Logical expression for difference, Inputs Output
A B | Difference | Borrow
difference = A B + AB = A®B o L L 9
0 1 1 1
. . 1 0 1 0
Logical expression for borrow, 7 T N N
Truth table

borrow = A B

image88.png
Full Subtractor

A combinational logic circuit performs a subtraction between the two binary bits by
considering borrow of the lower significant stage is called as the full subtractor. In this,
subtraction of the two digits is performed by taking into consideration whether a 1 has

already borrowed by the previous adjacent lower minuend bit or not.

It has three input terminals in which two terminals corresponds to the two bits to be
subtracted (minuend A and subtrahend B), and a borrow bit Bi corresponds to the
borrow operation. There are two outputs, one corresponds to the difference D output

and other borrow output Bo as shown in figure along with truth table.

image89.png
A
Full
B Subtractor
Bin

Block Diagram of
Full Subtractor

o|lrle|lr|lo|r|e

rlrle|rlo|o|c|e| >

rlrlo|le|r|ro|o| m

rlojo|rio|r r|lo|lg

wlololo|rinklo|w

Truth Table

image90.png
The full subtractor expression for Difference is,

D = A’B’Bin + AB’Bin’+ A’BBin’ + ABBin

The full-subtractor expression for Borrow is,

Bout = A'Bin + A'B + BBin

image91.png
A faster way to compute carry outs

= Instead of waiting for the carry out from each & A
previous stage, we can minimize the delay by i:ﬁ
computing it directly with a two-level circuit. [] \‘

= First we’ll define two functions. G _,T Ve P

— The "generate” function G, produces 1 :...na'(j”r_/' o
when there must be a carry out from b 1l
position i (i.e., when A; and B; are both 1). I“

\
G; = AB, si

— The "propagate” function P, is true when A B G |G,
an incoming carry is propagated (i.e, when 00 0] o0
A=1or B=1, but not both). 0 0 1 0

0o 1 00

Pi=A@B 001 11

= Then we can rewrite the carry out function. : g (1) ?
C.i =G+ PG 1 1 0 1

1.1 111

